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ABSTRACT

Motivation:Simulationandmodeling is becomingastandardapproach

to understandcomplexbiochemical processes. Therefore, there is abig

need for software tools that allow access to diverse simulation and

modeling methods as well as support for the usage of these methods.

Results:Here, we present COPASI, a platform-independent and user-

friendly biochemical simulator that offers several unique features. We

discussnumerical issueswith these features; in particular, the criteria to

switchbetweenstochasticanddeterministic simulationmethods,hybrid

deterministic–stochastic methods, and the importance of randomnum-

ber generator numerical resolution in stochastic simulation.

Availability: The complete software is available in binary (executable)

for MSWindows, OS X, Linux (Intel) and Sun Solaris (SPARC), as well

as the full source code under an open source license from http://www.

copasi.org.

Contact: mendes@vbi.vt.edu

INTRODUCTION

Simulation and modeling is becoming one of the standard

approaches to understand complex biochemical processes. There-

fore, there is a growing need for software tools that allow access to

diverse simulation and modeling methods as well as support for the

usage of these methods. These software tools should be compatible,

e.g. via file standards, platform independent and user friendly to

avoid time-consuming conversions and learning procedures. In

addition, the software should be actively maintained and updated

by its authors.

Standard methodology used in the field comprises, e.g. the deter-

ministic [integration of ordinary differential equations (ODEs)] and

stochastic [e.g. using Gillespie’s algorithm; Gillespie (1976)]

simulation of reaction networks, the computation of steady states

and their stability, stoichiometric network analysis, e.g. computing

elementary modes (Schuster et al., 1999), sensitivity analysis [meta-

bolic control analysis; Fell (1996); Heinrich and Shuster, 1997],

optimization and parameter estimation.

In order to meet this need for software in the field, several tools

have been developed and released recently (see http://www.sbml.

org). Most tools offer specific functionalities, e.g. stochastic

simulations of reaction networks (Le Novére and Shimizu, 2001)

and flux analysis (Klamt et al., 2003). However, some tools contain

whole suites of functionalities, e.g. simulation, flux and control

analysis (Tomita et al., 1999; Sauro et al., 2003; Meng et al., 2004).
In order to improve the compatibility of these tools, markup lan-

guages such as SBML (Hucka et al., 2003) and CellML (Lloyd

et al., 2004) were created to allow model exchange. Many tools

are now able to read and write models in these file formats.

Here we present a new program—COPASI (COmplex PAthway

SImulator)—which combines all of the above standards and some

unique methods for the simulation and analysis of biochemical

reaction networks. COPASI is the successor to Gepasi (Mendes,

1993, 1997) and is available for all major operating systems (Linux,

Mac OS X, Windows, Solaris). As described below, COPASI

supports non-expert users by, for example, automatically converting

reaction equations to the appropriate mathematical formalism

(ODEs or reaction propensities). The general features of COPASI

are described briefly and those that are unique are discussed in more

detail.

GENERAL FEATURES

COPASI is a stand-alone program that can be used through two

different executable versions: a graphical user interface (CopasiUI)

and a command line version (CopasiSE) that only contains the

calculation engine. CopasiSE is intended for situations in which

the user is not expected to interact with the software. The following

use cases are examples of situations in which it would be used:

(i) when third-party programs manipulate COPASI files, call

CopasiSE to produce results, and then inspect and continue gener-

ating other COPASI files depending on results; (ii) to run simula-

tions ‘in the background’, which is useful when the run takes a long

time; (iii) as a simulation engine for specialized front-ends that may

be created by others. Essentially, CopasiSE allows much flexibility

of execution and control, with the penalty that this version can only

run numerical procedures, not edit models. CopasiUI, on the other

hand, is the complete version of the program and is the one that we

expect users to run most often. CopasiUI provides a full graphical

user interface (GUI), including functions for creating and editing

models and plotting results. In terms of execution of the numerical

procedures (simulation, optimization, etc.) the two versions are

essentially equal, except that CopasiUI may be slightly slower

when producing graphical output. In practice the two executables

share the same source code and are expected to produce exactly the

same results.
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COPASI’s graphical interface is similar to Windows Explorer in

operation, where there is a vertical window on the left with a set of

functions organized in a hierarchical way; on the right there is a

larger window that contains all of the controls to operate the

function selected on the left (Fig. 1). The major group of functions

in the program are as follows:

� Model, where themodel can be edited and viewed according to a

biochemical or mathematical perspective.

� Tasks, consisting of the major numerical operations on the

model: steady state, time course, stoichiometry, metabolic

control analysis and Lyapunov exponents. Below each task an

entry with results will appear after the task has been run.

� Multiple Tasks,which are operations repeating elementary tasks:

parameter scanning, optimization and parameter estimation.

� Output is where plots and reports are defined and listed.

� Functions containing themathematical functions available, such

as the rate laws.

Model editing is done through tables and specialized widgets

(Fig. 1) and the program provides various ways of editing the

model items. For example, the user can change the value of kinetic

constants in the single reaction widget (which provides detailed

information about a single reaction), or in the parameter overview

widget (Fig. 1B). There are two major views of the model: one

set of widgets provides a view from the biochemical perspective,

where the model is composed of reactions, compartments, metabo-

lites, etc.; while another provides a mathematical view, where the

model is composed of variables and differential equations. In the

current version of COPASI the mathematical representation is for

viewing only. The advantage of having two alternative views is that

we expect different users to have different backgrounds and be more

comfortable with one view or the other. This also provides a

common software tool that may act as a translator of concepts

for collaborators from different backgrounds.

Developing a model usually means combining information, e.g.

kinetic data, from different sources. One possible source of errors in

this process is the conversion of units of concentrations, kinetic

parameters, etc. Although COPASI cannot do automatic conversion

of such units, it provides help to the user in the following way:When

a kinetic function is entered (or chosen from the integrated kinetics

library) COPASI determines the units of the kinetic parameters from

an analysis of the rate law, where possible. This allows the user to

easily determine if available kinetic parameters from one source

match a kinetic function from another source. To our knowledge,

COPASI is currently the only software tool that is able to do so.

COPASI’s native file format is based on XML and documentation

of its schema is available so that other tools can write (or read)

it. COPASI can also read Gepasi files, providing backwards com-

patibility with its predecessor. Finally and as explained below

in more detail COPASI is able to import SBML either level 1 or

level 2, and thus it can obtain models from many sources, such as

other simulators, model databases, pathway databases and so on (see

http://www.sbml.org). To store the complete model information,

including task settings and output definitions, COPASI uses its

own file format. Models can also be exported in SBML and the

program can write the ordinary differential equations in plain C files

(ready to be included in other C/C++ programs) and in Berkeley

Madonna’s format (http://www.berkeleymadonna.com), a popular

program for nonlinear dynamics which does not import SBML.

COPASI can also output results of its various functions in two

ways: report files and plots. The user can define report files

containing any number of simulation results, parameters and

other model items; this is done through an interface where all

these items are organized in a hierarchy. In addition, the software

has a number of predefined report formats that cover most of the

common use cases. Results of operations are also presented directly

in the user interface, in table format, which can be saved to

tab-delimited files easily. Examples of such tables presented

directly are time courses, the Jacobian matrix, matrices of control

coefficients, etc. Tab-delimited files can also be saved directly from

the plot window. Plotting support is built-in and plots, such as

reports, can be defined in very flexible ways. COPASI supports

x–y line plots and distribution histograms (a feature not commonly

found in simulators, Fig. 2), scales can be linear or log-transformed,

and the plot window allows zooming and panning.

Fig. 1. COPASI’s interface for model editing: the left panel contains all of the possible actions organized in a hierarchy; the right panel changes according to the

selection on the tree control. (A) kinetic functions: the mathematical formula of the kinetic rate laws is displayed together with the specifications of the kinetic

parameters including their dimensions. (B) Parameter overview; listing all model parameters in a single table. including initial conditions and kinetic parameters.

(C) Metabolite overview: where all molecules of the model are listed and their properties edited.
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COPASI calculates time courses using a deterministic or a

stochastic framework, depending on the user preference. For deter-

ministic solutions, the LSODA integrator is used (Petzold, 1983),

whereas for stochastic solutions the Gibson–Bruck version (Gibson

and Bruck, 2000) of the Gillespie method (Gillespie, 1976) is

applied (Fig. 2). In addition, a hybrid method that we developed

is also available and described below. The user can easily switch

between these methods by choosing from a drop-down list. COPASI

can automatically convert chemical kinetic rate laws into their

appropriate discrete stochastic equivalents, although this feature

can be disabled when desired. Generally, for not too small particle

numbers, the propensity of a reaction (the differential probability

that a reaction event will happen in the next small time interval) is

proportional to the reaction rate, which is given by the kinetic

function of the reaction. This has been shown for mass action

kinetics (Gillespie, 1976) and is at least approximately true

under certain conditions for other kinetic types, such as Michaelis–

Menten (see discussion below). For very small particle numbers,

however, this relation does not necessarily hold. Consider, for

example, a second-order mass action reaction (2S! P). Its forward

reaction rate is proportional to the square of the number of substrate

particles. On the other hand the probability of a reaction event,

calculated from the probability that two substrate particles meet

(Gillespie, 1976), is proportional to NS*ðNS � 1Þ, where NS is

the number of particles of the substrate. When presented with a

model that was written for the deterministic simulation paradigm,

COPASI can automatically do the conversion from N2 to N�(N�1),

thus enabling a transparent switch from deterministic to stochastic

simulation.

Another basic simulation function is the calculation of steady

states, which is carried out by a combination of the damped Newton

method and forward or backward integration (using LSODA). The

steady state can also be characterized with linear stability analysis

(Stucki, 1978) and metabolic control analysis (Fell, 1996).

COPASI determines structural (stoichiometric) properties of the

biochemical network. Mass conservation is calculated using the

algorithm described by Vallabhajosyula et al. (2006) that uses

Householder reflections. (Vallabhajosyula et al. mentioned that

COPASI used Gauss elimination for this purpose, which was

true at that time; however, since then we have switched to using

this more efficient algorithm.) Elementary flux modes, a unique set

of the smallest possible sub-networks that still allow a steady state

(Schuster et al., 1999) are calculated using our implementation of

the METATOOL algorithm (Pfeiffer et al., 1999).
COPASI is equipped with a number of diverse optimization

algorithms that can be used to minimize or maximize any variable

of the model, following the scheme proposed by Mendes and

Kell (1998). Two algorithms are based on estimating derivatives

of the objective function, steepest descent and Levenberg–

Marquardt (Levenberg, 1944; Marquardt, 1963; Goldfeld et al.,
1966); a direct search algorithm, which is based on geometric con-

cepts, the Hooke–Jeeves method (Hooke and Jeeves, 1961); four

evolutionary algorithms, evolutionary programming (Fogel et al.,
1992), genetic algorithm [a version with floating point encoding;

Michalewicz (1994)], evolution strategy with stochastic ranking

(SRES; Runarsson and Yao, 2000) and a genetic algorithm with

stochastic ranking; finally, there is also a simple random search

algorithm.

The optimization algorithms are also used for estimating parame-

ter values that best fit a set of data provided by the user. To this end,

COPASI reproduces the functionality of Gepasi (Mendes and Kell,

1998) and exceeds it by allowing mixtures of time course and

steady-state data to be used simultaneously (Gepasi could only

deal with one of these types of data at a time).

Finally, COPASI is able to compute the Lyapunov exponents and

the divergence of a given system (as described below in more

detail).

ARCHITECTURE

Our goals for COPASI are ease of use, availability of complex

analysis methods and fast reliable simulation, which seem to be

contradictory. In addition the software needs to be available for the

majority of scientists, i.e. the main operating systems need to be

supported. These requirements drove the architectural design.

Ease of use requires an interactive GUI. However, the size and

complexity of some of the simulation tasks such as ‘Parameter

Estimation’ requires speed and batch processing capabilities. To

address both needs we chose C++ as the programming language

and made a clear separation between the representation and the com-

puting layer. This results in two separate versions of the program,

one with a GUI and the other with a command line interface, that

nevertheless share a common code base. The code itself is structured

into smaller packages such as the model, the time course integration

or the parameter estimation libraries to enhance maintainability.

The software is available for the following operating systems:

Microsoft Windows (Windows 98 and above), Linux, Mac OS X

(Power–PC, runs also on Intel) and Sun Microsystems Solaris (ver-

sion 8 and above on SPARC). This cross platform portability has

been achieved by adhering to the ANSI C++ standard and relying on

toolkits and libraries that are available on the major operating

systems.

The GUI was constructed based on the QT toolkit (Trolltech, Inc.,

Oslo), which is the essential portability layer (i.e. produces different

OS versions from the same source code). This results in a program

Fig. 2. Example of COPASI plotting capabilities, depicting a stochastic

simulation of a model with oscillations. The light gray curve is the trajectory

of the system in a 2Dphase space projection. The black curve is a histogramof

the distribution of the particle numbers of one of the species during the

oscillation.

COPASI

3069



that has the expected look and feel of the underlying operating

system. Since the users are provided with an interface following

the same style and layout as other applications on their computer the

usability is greatly enhanced. In addition support libraries for QT are

available, which allow us to provide convenient plotting of results

(Qwt project, http://qwt.sf.net) and rendering of mathematical

expressions (QT Solutions, MML Widget).

For reliable and fast computation COPASI uses standard numeri-

cal libraries: LAPACK (Anderson et al., 1999) for linear algebra,
BLAS (Lawson et al.,1979) for matrix and vector operations, and

LSODA (Petzold, 1983) from ODEPACK (Hindmarsh, 1983) for

integration of ODEs. There are optimized versions of LAPACK and

BLAS for the major hardware and operating system that we have

used to build the binary versions, providing COPASI with a little

extra performance. For example, the Intel BLAS version uses

special features of Pentium processors, whereas the Apple BLAS

version uses the AltiVec unit of the PowerPC processors.

SIMULATION ISSUES

Deciding on different simulation methods

Deciding which simulation methods are best suited for a specific

reaction system is a tricky business. In principle, stochastic methods

are more accurate because they take into account the intrinsic

stochasticity of the system and do not rely on the assumption of

continuous concentrations. However, stochastic methods are much

slower than the deterministic ones based on solving ODEs. In

addition, several stochastic trajectories, need to be calculated to

determine a clear picture of the system’s behavior; when stochastic

effects are important, the concept of a single trajectory is replaced

by a distribution of trajectories thus several single trajectory

instances are needed to sample the distribution. The question is

under which conditions it is valid to use an ODE representation.

Hybrid algorithms that combine solution of ODEs with stochastic

methods, as the one we describe below, solve this problem in special

cases. These hybrid methods also require a decision algorithm to

partition the system into components that can be simulated with

ODEs and components that have to be simulated stochastically. So

far, the stochastic–deterministic hybrid methods rely on some sort

of heuristics (e.g. based on the number of particles or propensities)

or more correctly on comparison of results obtained with the stoch-

astic and the deterministic methods alone. Whereas the first method

is error-prone, the second one does not provide any advantage over

computing the complete system with the slower stochastic method

alone. Thus there is a considerable need for good decision

algorithms, particularly if they are based on sound theoretical argu-

ments. So far, such an algorithm is not existing. However, as we

have shown recently (Kummer et al., 2005), the computation of the

divergence of the system (sum of Lyapunov exponents) is a factor

that can support the user in making a decision. COPASI is capable

of computing the divergence (Fig. 3). Since this is only one factor

for the decision making which simulation method is suitable and it

cannot be used automatically yet, it is not used in our hybrid

algorithm as described below.

Calculation of the Lyapunov exponents is performed using

the algorithm proposed by Wolf et al. (1985). One problem of

this algorithm is that it requires a correct time interval for the

orthonormalization of the linearized system. If the interval is too

large the estimated value of the negative exponents will be much

too high. If the interval is too small the calculation will be

inefficient. COPASI provides the user with a criterion to judge

the appropriateness of this parameter for the given model. A

well-known property of Lyapunov exponents is that the sum of

all exponents equals the average divergence of the system. On

the other hand the divergence is defined as the trace of the Jacobian.

Since COPASI can calculate both the Lyapunov exponents and the

divergence of the system from the Jacobian, the user can compare

these two values. We have found that a match of these two values

constitutes a reliable indicator that the orthonormalization interval

is not too large.

Although the absolute value of the divergence at one point in

parameter space is not sufficient to decide for or against a simulation

method, the computation of several values and the comparison of a

stochastic and deterministic simulations at a point where the diver-

gence of the specific system is at a maximum offers the following

insight, valid for many systems: if both simulations coincide, the

deterministic simulation should be reliable for all points in parame-

ter space with lower divergence. If the solutions do not coincide, the

computation at this point has to be carried out using stochastic or

hybrid methods. Another reference point with lower divergence can

then be taken for a subsequent analysis. We plan to provide a

more automated analysis including more factors than just the

divergence and a potential interpretation of the absolute values

in future COPASI versions.

Hybrid algorithms

A number of hybrid methods have been proposed that combine

different mathematical methodologies to simulate a biochemical

system (Haseltine and Rawlings, 2002; Puchalka and Kierzek,

2004; Kiehl et al., 2004; Salis and Kaznessis, 2005; Salis et al.,
2006; Alfonsi et al., 2005). They partition the reaction network into
subnetworks and use appropriate stochastic, approximate stochastic

or deterministic simulation methods on each of those subnets. In

most cases the rationale behind this is to avoid the use of

time-consuming stochastic methods on certain parts of the network,

where they are not needed. Instead faster simulation methods are

used on those subnets to accelerate the whole simulation.

Our hybrid method combines the stochastic simulation algorithm

by Gibson and Bruck (Next Reaction Method; Gibson and Bruck,

Fig. 3. Lyapunov exponents and average divergence as a function of a kinetic

constant in an oscillating system. First and second Lyapunov exponents are

the two upper curves, average divergence is the curve on the bottom right of

the plot. This example was obtained through a parameter scan repeating the

Lyapunov exponent calculation 500 times at different values of the kinetic

constant.
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2000) with different algorithms for the numerical integration of

ODEs. The biochemical network is dynamically partitioned into

a deterministic and a stochastic subnet depending on the current

particle numbers in the system. The user can define limits for when a

particle number should be considered low or high. The stochastic

subnet contains reactions involving low numbered species as

substrate or product. All the other reactions form the deterministic

subnet. The two subnets are then simulated in parallel using the

stochastic and deterministic solver, respectively (Fig. 4). The

reaction probabilities in the stochastic subnet are approximated

as constant between two stochastic reaction events.

Our hybrid method, which was developed and described in a

diploma thesis of one of the authors (Pahle, 2002), is similar to

the one by Haseltine and Rawlings (2002), though in fact they both

were implemented independently during the same time. The main

difference is the dynamic partitioning with user-defined limits for

the particle numbers and the hysteresis-like repartitioning scheme.

This hybrid algorithm is able to simulate models faster than pure

stochastic methods, while still taking into account the random

effects in the stochastic subnetwork. If the limits for the particle

numbers are set to zero, the whole network will be simulated

deterministically. With increasing limits the calculation eventually

converges to an exact stochastic simulation of the system. We tested

our implementation in this limit successfully on the Discrete

Stochastic Model Test Suite (http://www.calibayes.ncl.ac.uk/

Resources/dsmts). If the particle number limits are in an interme-

diate range, between two repartitionings of the system the simula-

tion proceeds similar to the method described and validated in

Haseltine and Rawlings (2002). In addition, we compared our

hybrid solver to an exact stochastic solver with respect to distribu-

tions of species particle numbers in different test systems. One

example is shown in Fig. 4. However, we want to stress that

due to the still heuristic partitioning criterion it is possible for

the user to choose the limits such that the result of the hybrid solver

deviates from the exact stochastic result as possible with other

hybrid methods.

The dynamical partitioning is vital, e.g. for oscillating systems,

but the speedup is very model-dependent. Because of the compu-

tational overhead for partitioning the system the hybrid method can

occasionally take longer than pure stochastic methods. In addition,

low-numbered species that take part in fast reactions slow the

simulation down by forcing the fast reactions to be simulated

stochastically. By using two distinct user-defined limits for the

particle numbers and a hysteresis-like updating scheme for the

partitioning we avoid unnecessary and time-consuming reaction

swaps if particle numbers are fluctuating in a medium range.

We settled on the simple partitioning criterion using particle

numbers for three reasons. First, the amplitude of relative fluctua-

tions of particle numbers are high in low-numbered species. Single

reaction events can have a significant impact here. Reactions

involving those species should therefore be handled stochastically.

Second, most of the computational effort of stochastic simulation

algorithms is spent on fast reactions. In order to speed up the

simulation, fast reactions should be taken out of the stochastic

subsystem and simulated deterministically. The higher the number

of substrate particles, the faster the reaction will be. This is true for

mass action kinetics and for some parts of the phase space of

enzyme kinetics. Third, if only reactions involving high-numbered

species are simulated deterministically, the relative changes in

particle numbers are minimal. For this reason, the change in reaction

probabilities in the stochastic subnet caused by the fast subnet

during one step can be neglected.

ODEs describing biochemical networks are often stiff. In our

hybrid method we therefore use the LSODA algorithm (Petzold,

1983), which is adequate for the numerical integration of the

deterministic subnetwork in the presence of stiffness. We also

implemented a hybrid solver that uses a fourth-order Runge–

Kutta method for cases when one is certain that the system is

never stiff. Because the hybrid calculation requires many separate

ODE integrations in small time intervals, the use of a simple one-

step solver like Runge–Kutta can be faster since it lacks the com-

putational overhead of predictor corrector methods.

There exist several mathematically equivalent algorithms for the

stochastic simulation of biochemical networks [the Direct Method

and First Reaction Method, Gillespie (1976); the Next Reaction

Method, Gibson and Bruck (2000); and the method by Cao et al.
(2004)]. In our hybrid solver we chose the method by Gibson and

Bruck for the simulation of the stochastic part of the network, as it

was the most convenient to integrate into our hybrid calculation

scheme.

Handling enzyme kinetics in stochastic simulations

When stochastically simulating a reaction network, which has been

described by a set of ODEs, all reaction rates have to be transferred

to a corresponding reaction probability. This is rather simple and

straightforward in the case of mass action kinetics (Gillespie, 1976).

However, enzyme kinetic rate laws represent a lumping of terms

Fig. 4. Hybrid simulation of the calcium oscillation system in Kummer et al.

(2000), comprising species a, b and c, coupled to a linear pathway of reactions

(species d, g, h, i, j) via a calcium protein buffer complex p, which activates

the reaction from g to h. All other steps in the linear pathway have Henri–

Michaelis–Menten kinetics. Shown are the particle numbers over time

(A) and a comparison of the hybrid (B) (lower and upper particle number

limits 9 900 and 10 100, respectively) and pure stochastic (C) simulations in

terms of the particle number histograms of species g.

COPASI

3071

http://www.calibayes.ncl.ac.uk/


each corresponding to an elementary mass action reaction; an

important question is whether it is justifiable to use such a rate

expression within stochastic simulations. Several authors (Rao

and Arkin, 2003; Cao et al., 2005) have shown that as long as

the initial assumptions for the assumed kinetics hold (e.g. excess

substrate, fast reversible enzyme–substrate complex formation,

etc.), it is indeed justifiable to assume the enzymatic reaction to

constitute one single step with the respective rate law.

Basically, the rate law consists of a mass action part and a kinetic

part (Hofmeyr, 1995). The kinetic part depends on reactant amounts

and other factors, so it is not constant, but it could be assumed to

freeze and become constant for the single reaction event that is

computed in each step of the algorithm. This rate then has to be

computed anew for the next step of the stochastic simulation.

Handling reversible reactions in stochastic simulations

In order to perform a stochastic simulation, reversible reactions

have to be handled as a separate forward and backward irreversible

reactions. In deterministic simulations forward and backward reac-

tion rates can cancel each other out; in stochastic simulations each

single reaction event has to be considered separately. COPASI

provides a feature that, at the modeler’s request, converts all

reversible reactions to the corresponding individual forward and

backward reactions in order to allow for a stochastic simulation

of the model. The tool adjusts the reaction scheme and model

description automatically. However, due to the difficulty in dissect-

ing an arbitrary reversible kinetics into two irreversible kinetic

functions, fully automatic conversion only works for mass action

kinetics. For more complex kinetics the user will have to adjust the

kinetics after the conversion.

Numerical considerations in stochastic simulations

The selection of a pseudo random number generator (PRNG) is

commonly based only on its ability to create ‘random’ numbers.

The major factors being its period and its capability to create unre-

lated numbers in higher dimensions. Additionally, the speed is also

considered important as a large set of random numbers have to be

chosen. COPASI uses the Mersenne Twister (Matsumoto and

Nishimura, 1998) for all of the above reasons. A factor that is

commonly overlooked in this context is that for large biochemical

networks the numerical resolution or density of the numbers a

PRNG can create is also an extremely important factor. It is trivial

that one should use a PRNG implementation which is able to gen-

erate double versus float values in the interval (0,1) for probabilities.

However, commonly this number is computed by creating an inte-

ger in [0, (232�1)] and dividing it by (232�1), i.e. we have a density

of generated numbers of 1/(232). That this density does not suffice to

correctly simulate one slow reaction among a large number of fast

ones can easily be seen. Let us consider the direct variant of the

Gillespie algorithm and a system with 1000 fast reactions and one

slow where the factor of slow to fast is 10�7. This leads to a

probability 10�10 for the slow reaction which is less than 1/

(232�1), the maximal resolution for a random number generator

that creates unsigned 32 bit integers; i.e. the slow reaction would

never fire. The Mersenne Twister used by COPASI optionally pro-

vides pseudo random numbers with a density of 1/(253�1) <1.2 ·
10�16 by drawing two random numbers. The latter limit is due to the

floating point representation of a double and cannot be easily

improved on today’s architectures without major performance

losses.

FLEXIBLE OUTPUT: HISTOGRAMS

COPASI contains a simple but flexible plotting tool. It can generate

plots of all the numerical values that are generated in calculations.

For example, one can plot time series of model variables (Fig. 4),

phase space plots (Fig. 2), plots of model values versus model

parameters or simulation results versus parameters of the numerical

algorithms. In addition histograms of arbitrary values can be dis-

played. This is especially useful in the context of stochastic simu-

lations where distributions of results are often of interest. With this

feature it is easy to generate visualizations of stochastic steady-state

distributions (Fig. 2) or the results of repeated simulations. All plots

(including histograms) are updated during the calculations so the

progress of the simulation can be monitored as it happens. Plot

definition is very powerful providing the many model and simula-

tion items through a detailed hierarchy; whereas, this provides much

flexibility there are also predefined plots covering the most common

diagrams, which can be generated through selection from a menu.

PARAMETER ESTIMATION: SIMULTANEOUS FIT
TO TIME COURSE AND STEADY STATE

A special case of optimization is parameter estimation. The

objective function in this case is given implicitly by a function

that measures the distance between the model and the experimental

data, such as a sum of squares of residuals. The parameters of the

model (e.g. initial concentrations and kinetic constants) are then

adjusted to minimize the objective function. COPASI uses the

following weighted sum of squares as objective function which

is minimized for a parameter set P.

SðPÞ ¼
Xn

i¼1

vi ðxi � yiðPÞÞ
2
‚ ð1Þ

where the yi(P) are the simulated data corresponding to the

experimental data xi. The sum is taken over all provided data points

and vi is a weight to make all trajectories of each variable have

similar importance in the fit. Currently COPASI calculates weights

as vi ¼ 1/s2
i , with s2

i is the variance of the trajectory containing xi

(calculated independently for each item being fit). In future versions

of the software there will be further choices, such as vi ¼ 1/ j hxii j
and vi ¼ 1/

ffiffiffiffiffiffiffiffi
hx2i i

p
, where hxii is the mean value of the points in a

trajectory (also calculated independently for each item being fit).

Users will also be able to override the value of any weight manually.

The software is able to simultaneously fit the model to data from

steady-state and time course experiments. This is achieved by

enabling the user to provide multiple data files with multiple

experiments. Each experiment must provide independent input

data and dependent data. The sum in Equation (1) is taken over

all dependent data points xi and the corresponding yi are calculated

with respect to the given independent data.

The minimization of Equation (1) can be achieved with generic

optimization algorithms, but some specific algorithms, such as

Levenberg–Marquardt (Levenberg, 1944; Marquardt, 1963),

make use of the special form of the objective function S(P).
COPASI distinguishes those special algorithms and provides

them with the vector of residuals rather than just the weighted
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sum of squares, as is the case for the generic algorithms. In par-

ticular, COPASI includes two versions of the Levenberg–Marquardt

algorithm, the original one from Marquardt (1963) that specifically

uses the vector of residuals, and a version that uses only the sum of

squares (Goldfeld et al., 1966). The selection of one or the other

version of this algorithm is done automatically and the fact that

there are two versions is transparent to the user.

PARAMETER SCANS FEATURING REPEAT
AND RANDOM GRIDS

COPASI can perform complex calculations that combine several

simulation runs. A graphical interface is provided that allows easy

access to the following features: parameter scans where a simulation

is run several times, each one with a different value of the scanned

parameters; repeated simulations, where a simulation is repeated

without any change in parameters, useful for delineating distribu-

tions of trajectories in stochastic simulation; and random parameter

sampling, where parameter values are drawn from a defined

distribution, performing Monte Carlo parameter scans. These fea-

tures can also be nested arbitrarily, for example, it is possible to

define a calculation where for each of 10 values of a kinetic parame-

ter a stochastic simulation is repeated 100 times. An example of

parameter scans is depicted in Figure 3.

COMMUNITY INTEGRATION

In order to be compatible with other systems biology software,

COPASI reads and writes SBML files through libsbml (http://

www.sbml.org/software/libsbml/). All valid SBML files can be

read, although the user is warned when the model contains features

of SBML that are not yet supported (though only a few SBML

features are not handled: rules and events). To assure conformance

with the standard, our software is regularly tested with the SBML

semantic test-suite (http://www.sbml.org/wiki/Semantic_Test_Suite)

which consists of a battery of SBML files and expected results to test

each of the individual SBML features. COPASI passes all tests

except those for the features currently not supported.

In addition to SBML support, COPASI is also able to export

the kinetic model as simple C code that can be incorporated in

C/C++ programs, as well as in tools such as Mathematica, etc.

The user has also the possibility of exporting the model as a Berke-

ley Madonna file (http://www.berkeleymadonna.com), which is a

popular program to simulate biochemical systems, but has no means

to import SBML.

CONCLUSION

We have presented COPASI, a software tool that integrates diverse

numerical methods used in computational systems biology. One of

its important novel features is the way in which it facilitates a

modeler to easily switch between different simulation approaches.

We discussed in more detail the specific problems that such feature

implies and a number of numerical procedures that have been

implemented to address them. Additional unique features of

COPASI that are helpful in studying biochemical networks were

described, such as flexible parameter scans, optimization of

arbitrary expressions and parameter estimation using time course

and steady-state data simultaneously. In conclusion, COPASI is a

powerful yet user-friendly tool that provides common as well as

unique features for systems biology research.
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